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babylon
• Babylonians were obsessed with data 

and calculating (polynomial curve fitting)

• Knew about all the key theorems of the 
day and were extraordinary at 
predicting astronomical events

• Students learned math by working out 
large numbers of problems until 
they “understood” the general concept

• Incapable of scaffolding theorems
together to create something larger



greece

• Ancient Greeks were obsessed with models
– Ex: stars, sun, planets, moon are holes in a 

colossal cosmic colander that reveals the 
eternal fire beyond 

• Such a (bad) model, inspired Eratosthenes 
to use geometry to deduce the 
radius of the earth

• Such a deduction would never have 
occurred to a Babylonian curve fitter

[Feynman, 1964 …]
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models data



easy inference problems
• Great success on “easy” inference problems where 

accurate, tractable models are easy to develop 
(Greek approach)

• Least squares for optimal estimation
• Optimal matched filtering to detect signals in noise
• Optimal Wiener filtering to separate signals from noise
• Optimal Kalman filtering to track signals in noise
• AR / ARMA modeling
• Sparse recovery/Lasso (when the features are actually sparse)

• SVM (when the data is actually linearly separable)
…



wicked hard inference problems
• Historically, less success on “wicked hard” problems like 

machine perception
– Ex: object/speech recognition, image priors, robot navigation, …



wicked hard inference problems
• Historically, less success on “wicked hard” problems like 

machine perception
– Ex: object/speech recognition, image priors, robot navigation, …

• Key challenge: Perception plagued by large 
amounts of nuisance variation

– Ex: in object recognition: changes in location, pose, viewpoint, 
lighting, expression, occlusion, …

– Some nuisances might not be known explicitly



what makes perception wicked hard?

• Problem: Nuisance variations 
generate entangled manifolds 
in high-dimensional space

• Ex: Classify Ingrid vs. Laura Laura
manifold

Ingrid
manifold



holy grail of machine perception

• Learn a model that disentangles (factors out) nuisance 
variations, leaving meaningful intrinsic degrees of freedom
– In the past: Fourier transform, cepstrum, wavelets, K-SVD, SIFT, …

Laura
Ingrid



deep learning

• Today, Babylonians
are making all the progress

• How? Black box deep neural networks
– multi-scale architecture combining adaptive filters with simple nonlinearities
– convolution | thresholding | sub-sampling

ReLU ReLU



convolution

• Convolve image with a 
set of filters

– When local image patch
resembles filter weights,
then output is large

– Otherwise, output is small

• Most nets also add a bias to the convolution output (affine)

• Filter weights and biases are the only parameters in the net



rectifier

• Rectified linear unit (ReLU)

• Discard negative values



sub-sampling

• Down-sample to reduce dimensionality 
of subsequent layers

– Average pooling (linear)
– Max pooling (nonlinear)
– Channel pooling



convo | ReLU | max-pool
filter weights

(template) image

convolution
+ bias

ReLU

(sub-sample)

(thresholding)

pool

parameters



inference

• Output convnet into an old-school neural network (1990s)
(multinomial logistic regression aka “softmax”)

• For classification, use a “1-hot encoding” of the classes
(likelihood histogram over classes)

representation (featurization) classifier

ReLU ReLU



learning

• Estimate the parameters (convo filter weights, biases) given a 
(large) set of labeled training data

• Cost function that quantifies prediction errors on training data (     vs.    )
– Ex: cross-entropy for classification, squared error for regression

• Optimize cost function via stochastic gradient descent with the 
gradient computed via backpropagation (chain rule of calculus)

bo
at

 =

gradients of Cost(   )



deep nets – a perfect storm

ca. 2012
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inverse problems

• Ex: Compressive cameras, radars, MRIs

• Typically assume:

known forward operator

known image model for 

• Challenges:
– Image modeling is wicked hard 
– Forward operator never known exactly



recovery by optimization

• Goal: Given               find    

• Now-classical signal model:      is    -sparse in some basis

• Numerous iterative optimizations for recovery
– Lasso
– BPDN
– AMP
– ADMM
– Bregman
– Iterative hard thresholding
– …



iterative hard thresholding
• Goal: Given               find    

• Standard signal prior:      is    -sparse in some basis

• Iterative hard thresholding algorithm
– Given an initial guess
– For                      do

+

account for 
forward model

hard thresholding
(signal model)



network for recovery

• Encapsulate operations from one iteration of the algorithm

… into one block of the network

+



network for recovery
• Unrolled network equivalent to N iterations of the algorithm

…

…



network for recovery
• Unrolled network equivalent to N iterations of the algorithm

• Replace assumed forward model and signal model 
with more flexible models that can be learned from data

• Ex: Replace wavelet thresholding Hk with deep net denoisers
(ex: DnCNN, ECNDNet, …)

…

…



optimized network
• Construct training data                            and use 

training error

to optimize the parameters of the network 
via back propagation (a la deep nets)                

…

…

-



sparse recovery (20x undersampling)

TVAL3
6.85 sec
26.4 dB

BM3D-AMP
75.04 sec
27.2 dB

Learned D-DAMP
1.22 sec
28.1 dB

A. Mousavi, C. Metzler, RB, “Learned D-AMP: Principled Neural-Network-based Compressive Image Recovery,” NIPS 2017



phase retrieval 
(4x Fourier measurements w/ Poison noise)

C. Metzler, P. Schniter, A. Veeraraghavan, RB, “prDeep: Robust Phase Retrieval with a Flexible Deep Network,” ICML 2018

Hybrid Input/Ouput
(40s)

BM3D-AMDD
(144s)

prDeep
(75s)



nonlinear sensing
• Can design matched nonlinear sensing/recovery schemes 

based on deep nets

A. Mousavi, G. Dasarathy, RB, “DeepCodec: Adaptive Sensing and Recovery via Deep Convolutional Neural Networks,” ICLR 2019

signal
measurements

recovery

N=512 Nyquist samples
K=64 wavelet-sparse

— Original signal
— DeepSSR M=64
— Lasso       M=153



CS is growing up
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greek questions for the babylonians

• Why is deep learning so effective?

• Can we derive deep learning systems from first principles?

• When and why does deep learning fail?

• How can deep learning systems be improved and extended 
in a principled fashion?

• Where is the foundational framework for theory?

See also Mallat, Soatto, Arora, Poggio, Tishby, [growing community] …



splines 
and deep learning

R. Balestriero & RB
“A Spline Theory of Deep Networks,” ICML 2018
“Mad Max: Affine Spline Insights into Deep Learning,” arxiv.org/abs/1805.06576, 2018
“From Hard to Soft: Understanding Deep Network Nonlinearities…,” ICLR 2019
“A Max-Affine Spline Perspective of RNNs,” ICLR 2019 (w/ J. Wang)



deep nets and splines

convoconvo ReLU max-pool ReLU

layer 1 layer 2 layer 3

• Deep nets solve a function approx problem hierarchically 
using a very special family of splines



spline approximation



spline approximation
• A spline function approximation consists of

– a partition Ω of the independent variable (input space) 
– a (simple) local mapping on each region of the partition

(our focus: piecewise-affine mappings)

Ω



max-affine spline (MAS)
• Consider piecewise-affine approximation of 

a convex function over R regions

– Affine functions:

[Magnani & Boyd, 2009; Hannah & Dunson, 2013] 

fixed parameters



max-affine spline (MAS)
• Consider piecewise-affine approximation of 

a convex function over R regions

– Affine functions:

[Magnani & Boyd, 2009; Hannah & Dunson, 2013] 

fixed parameters



max-affine spline (MAS)
• Consider piecewise-affine approximation of 

a convex function over R regions

– Affine functions:

– Convex approximation:

[Magnani & Boyd, 2009; Hannah & Dunson, 2013] 



max-affine spline (MAS)
• Key: Any set of affine parameters

implicitly determines a spline partition

– Affine functions:

– Convex approximation:

[Magnani & Boyd, 2009; Hannah & Dunson, 2013] 



scale + bias | ReLU is a MAS
• Scale x by a + bias b | ReLU:

– Affine functions:

– Convex approximation:



theorems
• Standard deep net layers are Max Affine Spline Operators 

– fully connected, convo | (leaky) ReLU, abs value
– max/mean/channel-pooling
– convex wrt each output dimension, piecewise-affine operator



theorems
• Standard deep net layers are MASOs 

– convex wrt each output dimension, piecewise-affine operator

• A deep net is a composition of MASOs
– non-convex piecewise-affine spline operator 

WLOG
ignore
output 
softmax



And now, things 
really get 

interesting…



• The parameters of a deep net layer (MASO) induce a 
partition of the layer’s input space with convex regions 

• The composition of several layers progressively subdivides a 
non-convex partition of the deep net input space

• Partition links deep nets to
– vector quantization (info theory) 
– k-means (statistics)
– Voronoi tiling (geometry)  

MASO spline partition



• The L layer-partitions of an L-layer deep net combine to form 
the global input signal space partition 
– affine spline operator
– non-convex regions

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

MASO spline partition



• The L layer-partitions of an L-layer deep net combine to form 
the global input signal space partition 
– affine spline operator
– non-convex regions

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D
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MASO spline partition

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• VQ partition of layer 1 
depicted in the input space
– convex regions



MASO spline partition

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• Given the partition region 
containing     the layer
input/output mapping is affine

x



MASO spline partition

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• VQ partition of layers 1 & 2 
depicted in the input space
– non-convex regions



MASO spline partition

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• Given the partition region 
containing     the two-layer
input/output mapping is affine

x



learning

learning epochs (time)

layers 1 & 2



local affine mapping – CNN

Fixed, different

in each 
partition region



deep nets are matched filterbanks

• Row c of            is a vectorized 
signal/image corresponding to class c

• Entry c of deep net output = 
inner product between row c and signal

• For classification, select largest output;
matched filter!

c



matched filter

optimal for signal 
+ 

white Gaussian noise

• Aka “sliding window cross-correlation”



deep nets are matched filterbanks

• Row c of            is a vectorized 
signal/image corresponding to class c

• Entry c of deep net output = 
inner product between row c and signal

• For classification, select largest output;
matched filter!

c



• (Max-Affine) Splines provide a solid mathematical 
foundation for a theory of deep learning
based on familiar signal processing tools
(like matched filtering, …)

Here’s the 
punch line



summary
• A wide range of inference problems can be 

solved using deep nets, including 
signal measurement & recovery

• A wide range of deep nets solve function approximation problems 
using a composition of max-affine spline operators (MASOs)
– links to vector quantization, k-means, Voronoi tiling

• Input/output deep net mapping is a 
VQ-dependent affine transform 

• Deep nets are (learned) matched filterbanks



the road ahead
• Still early days for bringing 

models and data into concert 
to tackle wicked hard 
inference problems

• New theory:    Splines
• New apps: Signal recovery

dsp.rice.edu





deep nets are matched filterbanks



orthogonal deep nets
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