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babylon

Babylonians were obsessed with data
and calculating (polynomial curve fitting)

Knew about all the key theorems of the
day and were extraordinary at
predicting astronomical events

Students learned math by working out
large numbers of problems until
they “understood” the general concept

Incapable of scaffolding theorems
together to create something larger




greece

e Ancient Greeks were obsessed with models

— EX: stars, sun, planets, moon are holes in a
colossal cosmic colander that reveals the
eternal fire beyond

e Such a (bad) model, inspired Eratosthenes
to use geometry to deduce the
radius of the earth

e Such a deduction would never have
occurred to a Babylonian curve fitter

a**
.l'

Troplc of Cancer
/ Syene
[Feynman, 1964 ..]

Equator
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easy Inference problems

Great success on “easy” inference problems where
accurate, tractable models are easy to develop
(Greek approach)

Least squares for optimal estimation

Optimal matched filtering to detect signals in noise
Optimal Wiener filtering to separate signals from noise
Optimal Kalman filtering to track signals in noise

AR / ARMA modeling

Sparse recovery/Lasso (when the features are actually sparse)
SVM (when the data is actually linearly separable)



wicked hard inference problems

e Historically, less success on “wicked hard” problems like
machine perception

— EX: object/speech recognition, image priors, robot navigation, ...



wicked hard inference problems

e Historically, less success on “wicked hard” problems like
machine perception

— EX: object/speech recognition, image priors, robot navigation, ...

e Key challenge: Perception plagued by large
amounts of nuisance variation
— EX: in object recognition: changes in location, pose, viewpoint,

lighting, expression, occlusion, ...
— Some nuisances might not be known explicitly




what makes perception wicked hard?

e Problem: Nuisance variations
generate entangled manifolds
In high-dimensional space

Laura
manifold

e EX: Classify Ingrid vs. Laura

Ingrid
manifold

]Rlo6

[DiCarlo et al. Neuron 2012]



holy grail of machine perception

/" Laura

Ingrid

e Learn a model that disentangles (factors out) nuisance
variations, leaving meaningful intrinsic degrees of freedom

— In the past: Fourier transform, cepstrum, wavelets, K-SVD, SIFT, ...



deep learning

e Today, Babylonians
are making all the progress

- How? Black box deep neural networks

— multi-scale architecture combining adaptive filters with simple nonlinearities

— convolution | thresholding | sub-sampling

Convolution RelLU Pooling Convolution ReLU Pooling Fully Fully Output Predictions

Connected Connected

dog (0.01)

o "L cat (0.04)
boat (0.94)
bird (0.02)
O g 3



convolution

Convolve image with a |
set of filters wl O
— When local image patch W Wi flll. -. w10 | weo
resembles filter weights, ﬁ-“i | l w! D
then output is large W W |
wi, W
— Otherwise, output is small .

Most nets also add a bias to the convolution output (affine)

Filter weights and biases are the only parameters in the net



rectifier

e Rectified linear unit (RelLU)

e Discard negative values

ReLU(u) = max(u, 0)




sub-sampling

e Down-sample to reduce dimensionality
of subsequent layers

max pooling
— Average pooling (linear) 20! 30
— Max pooling (nonlinear) 112l 37
— Channel pooling 12/20|30| 0
8 112] 2
3470|374 average pooling
112/100f 25| 12 13| 8

79| 20




convo | ReLU | max-pool
filter weights

(template) image

+ bias

pool
—

(sub-sample)

Only non-negative values




INference

Convolution RelLU Pooling Convolution ReLU Pooling Fully Fully Output Predictions
Connected Connected
L —~
dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
- "
4 _..0
representation (featurization) classifier

Output convnet into an old-school neural network (1990s)
(multinomial logistic regression aka “softmax”)

For classification, use a “1-hot encoding” of the classes
(likelihood histogram over classes)



learning

gradients of Cost(€;) €;
: ~—

.
y - ~—..  dog(0.01) y .
cat (0.04) y% y%
boat (0.94) I
bird (0.02) -
O] 0.1 ol

Estimate the parameters (convo filter weights, biases) given a
(large) set of labeled training data (XZ', yig)?zl

-
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Cost function that quantifies prediction errors on training data (@- VS. Yi)
— Ex: cross-entropy for classification, squared error for regression

Optimize cost function via stochastic gradient descent with the
gradient computed via backpropagation (chain rule of calculus)



deep nets — a perfect storm

Big Data

ca. 2012

Big Computers

Deep Architectures

Convolution Fully connected
f o Sl o < o,
Input Laysr ls.ﬂm\_
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the cranberries

EVERYBODY ELSE IS DOING IT,
SO WHY CAN’T WE?

25" Anniversary Edition

Remastered at Abbey Road Studios

e




Inverse problems

Ex: Compressive cameras, radars, MRIs . ...

and random basis
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Typically assume:
known forward operator A

known image model for X

.
i

Challenges: '
— Image modeling is wicked hard
— Forward operator never known exactly




recovery by optimization

e Goal: Given y = Ax find &

- Now-classical signal model: X is k-sparse in some basis

e Numerous iterative optimizations for recovery
— Lasso
— BPDN
— AMP
— ADMM
— Bregman
— Iterative hard thresholding



Iterative hard thresholding
e Goal: Given y = Az find &
- Standard signal prior: I is k-sparse in some basis

e lterative hard thresholding algorithm
— Given an initial guess 20

—Forn=0,1,...do "l = Hi|x™ + AT(y — Azx™)]

account for hard thresholding
forward model (signal model)




network for recovery

e Encapsulate operations from one iteration of the algorithm




network for recovery

e Unrolled network equivalent to N iterations of the algorithm




network for recovery

e Unrolled network equivalent to N iterations of the algorithm

1 2

b L

Z‘N

ATy
191 92 9N

e Replace assumed forward model and signal model
with more flexible models that can be learned from data

e EX: Replace wavelet thresholding H, with deep net denoisers
(ex: DNnCNN, ECNDNet, ...)



optimized network

- Construct training data {zs, y: = Az;}_; and use
training error N
€ = Ty — T}

to optimize the parameters of the network
via back propagation (a la deep nets) T,

.ClC’l 2

ATyt

|yt




Sparse recovery (20x undersampling)

TVALS3 BM3D-AMP Learned D-DAMP
6.85 sec 75.04 sec 1.22 sec
26.4 dB

A. Mousavi, C. Metzler, RB, “Learned D-AMP: Principled Neural-Network-based Compressive Image Recovery,” NIPS 2017



phase retrieval

(4x Fourier measurements w/ Poison noise)

Hybrid Input/Ouput BM3D-AMDD
(144s)

C. Metzler, P. Schniter, A. Veeraraghavan, RB, “prDeep: Robust Phase Retrieval with a Flexible Deep Network,” ICML 2018



nonlinear sensing

e Can design matched nonlinear sensing/recovery schemes

based on deep nets

Original Signal Reconstructed Signal

measurements

signal recovery

1.5

N=512 Nyquist samples
K=64 wavelet-sparse

— Original signal
— DeepSSR M=64
— Lasso M=153 |

‘lll ““ ¥ i

[ ."fﬁ'"ﬂvﬁtv"', ¥

100 200 300 400 500

A. Mousavi, G. Dasarathy, RB, “DeepCodec: Adaptive Sensing and Recovery via Deep Convolutional Neural Networks,” ICLR 2019
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Intelligence

Singularity Timeline

Time

1950 2000

Rise in human intellect could be driven by integrating with machines in the future







greek guestions for the babylonians

e Why is deep learning so effective?
e Can we derive deep learning systems from first principles?
e When and why does deep learning fail?

e How can deep learning systems be improved and extended
In a principled fashion?

e \Where is the foundational framework for theory?

See also Mallat, Soatto, Arora, Poggio, Tishby, [growing community] ...



splines & H -
and deep Iearnmg

R. Balestriero & RB

“A Spline Theory of Deep Networks,” ICML 2018

“Mad Max: Affine Spline Insights into Deep Learning,” arxiv.org/abs/1805.06576, 2018
“From Hard to Soft: Understanding Deep Network Nonlinearities...,” ICLR 2019

“A Max-Affine Spline Perspective of RNNs,” ICLR 2019 (w/ J. Wang)



deep nets and splines

e Deep nets solve a function approx problem hierarchically
using a very special family of splines

convo ReLU max-pool convo RelU

P

dog (0.01) y

= cat (0.04)
boat (0.94)
bird (0.02)
'f

A~ L 3 2 1
y = Jo ( ) — (f((L)) 9((3)) 9((2)) f((1)))( )

layer 2 layer 3



spline approximation




spline approximation

e A spline function approximation consists of
— a partition 2 of the independent variable (input space)

— a (simple) local mapping on each region of the partition
(our focus: piecewise-affine mappings)




max-affine spline (MAS)

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

e Consider piecewise-affine approximation of
a convex function over R regions

— Affine functions: CL;I:X +b,, r=1,....R

[

fixed parameters



max-affine spline (MAS)

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

e Consider piecewise-affine approximation of
a convex function over R regions

— Affine functions: CL;I:X +b,, r=1,....R

[

fixed parameters




max-affine spline (MAS)

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

e Consider piecewise-affine approximation of
a convex function over R regions

— Affine functions: CL;I:X +b,, r=1,....R

T
— Convex approximation: Z(X) = max a,X -+ by




max-affine spline (MAS)

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

- Key: Any set of affine parameters (a,,b0.), r=1,..., R
implicitly determines a spline partition
— Affine functions: CL;I:X +b.,, r=1,....R
: . _ T b
— Convex approximation: Z(X) = max a,X + O




scale + bias | RelLU i1s a MAS

e Scale x by a + bias b | ReLU: Z(:E) — maX(O, axr + b)
— Affine functions: (CLl, bl) = (O O) (ag, bg) = (CL, b)

— Convex approximation: Z(X) r—ElL}é CL X + b,




theorems

Standard deep net layers are Max Affine Spline Operators
— fully connected, convo | (leaky) ReLU, abs value

— max/mean/channel-pooling

— convex wrt each output dimension, piecewise-affine operator

convo ReLU max-pool convo RelU

P

y

- ~——.  dog(0.01)
cat (0.04)
boat (0.94)
bird (0.02)
O 'l

=
Lo

[ M

layer 1 layer 2
‘ MASO MASO




theorems

e Standard deep net layers are MASOs

— convex wrt each output dimension, piecewise-affine operator

convo ReLU max-pool convo RelLU

[
1

o
layer 1 layer 2 layer 3
MASO MASO MASO ‘

Affine Spline Operator

e A deep net is a composition of MASOs
— non-convex piecewise-affine spline operator

AN

y

dog (0.01)

boat (0.94)
bird (0.02)
O 4.1

\ WLOG

ignore
output
softmax



And now, things
really get
Interesting...




MASO spline partition

The parameters of a deep net layer (MASO) induce a
partition of the layer’s input space with convex regions

The composition of several layers progressively subdivides a
non-convex partition of the deep net input space

Partition links deep nets to
— vector quantization (info theory)
— k-means (statistics)

— Voronoi tiling (geometry)
(a1,b1)

-
-
-
-
-
-
-
-
-
-
-
-
-




MASO spline partition

The L layer-partitions of an L-layer deep net combine to form
the global input signal space partition

— affine spline operator
— non-convex regions

Toy example: 3-layer “deep net”
— Input x: 2-D (4 classes)

— Fully connected | ReLU (45-D output)
— Fully connected | ReLU (3-D output)
— Fully connected | (softmax) (4-D output)

— Outputy: 4-D




MASO spline partition

The L layer-partitions of an L-layer deep net combine to form
the global input signal space partition
— affine spline operator
— non-convex regions

Toy example: 3-layer “deep net”
— Input x: 2-D (4 classes) —) |

— Fully connected | ReLU (45-D output)
— Fully connected | ReLU (3-D output)
— Fully connected | (softmax) (4-D output)

— Outputy: 4-D




MASO spline partition

e Toy example: 3-layer “deep net”
— Input x: 2-D (4 classes)

— Fully connected | ReLU (45-D output)
— Fully connected | ReLU (3-D output)
— Fully connected | (softmax) (4-D output)

— Outputy: 4-D

e VQ partition of layer 1 e
depicted in the input space

— convex regions




MASO spline partition

Toy example: 3-layer “deep net”
— Input x: 2-D (4 classes)

— Fully connected | ReLU (45-D output)
— Fully connected | ReLU (3-D output)
— Fully connected | (softmax) (4-D output)

— Outputy: 4-D

Given the partition region Q(x)
containing X the layer
Input/output mapping is affine

2(x) = A X + b




MASO spline partition

e Toy example: 3-layer “deep net”
— Input x: 2-D (4 classes)

— Fully connected | ReLU (45-D output)
— Fully connected | RelLU (3-D output)
— Fully connected | (softmax) (4-D output)

— Outputy: 4-D

e VQ partition of layers 1 & 2 —_—
depicted in the input space

— non-convex regions




MASO spline partition

Toy example: 3-layer “deep net”
— Input x: 2-D (4 classes)

— Fully connected | ReLU (45-D output)
— Fully connected | RelLU (3-D output)
— Fully connected | (softmax) (4-D output)

— Outputy: 4-D

Given the partition region Q(X) — =—p
containing X the two-layer
Input/output mapping is affine

2(x) = A X + b




learning

learning epochs (time)



convo ReLU max-pool convo RelU connected : softm Fixed’ different
il l L =Ll' ~semr--mmeeo_ cod 001 -~
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deep nets are matched filterbanks

CoOnvo

layer 1

21 (x) = Agx)X + box)

e

fully

RelU max-pool convo RelU connected softmax

Ve et

layer 2

ElE N\
.

layer 3

zL) (x)

Row ¢ of A(x) is a vectorized
signal/image corresponding to class ¢

Entry c of deep net output =
Inner product between row ¢ and signal

For classification, select largest output;
matched filter!



matched filter

e Aka “sliding window cross-correlation”

cible

p—_ |

onde
o Emise
onde réfléchie
par la cible

faisceau radar

optimal for signal
+

white Gaussian noise

antenne
radar



deep nets are matched filterbanks

CoOnvo

layer 1

21 (x) = Agx)X + box)

e

fully

RelU max-pool convo RelU connected softmax

Ve et

layer 2

ElE N\
.

layer 3

zL) (x)

Row ¢ of A(x) is a vectorized
signal/image corresponding to class ¢

Entry c of deep net output =
Inner product between row ¢ and signal

For classification, select largest output;
matched filter!



Here’s the
punch line

e (Max-Affine) Splines provide a solid mathematical
foundation for a theory of deep learning

based on familiar signal processing tools
(like matched filtering, ...)



summary

A wide range of inference problems can be

1 2

solved using deep nets, including 2° — - - — e — "
signal measurement & recovery ATy— Hy . Hy .| Hy .
191 192 IBN

A wide range of deep nets solve function approximation problems
using a composition of max-affine spline operators (MASOs)
— links to vector quantization, k-means, Voronoi tiling

Input/output deep net mapping is a
VQ-dependent affine transform

Deep nets are (learned) matched filterbanks




the road ahead

» Still early days for bringing
models and data into concert
to tackle wicked hard
Inference problems

LEARN BUILD

e New theory: Splines
e New apps: Signal recovery

MEASURE

Rice UNIVERSITY

L-P

dsp.rice.edu






deep nets are matched filterbanks

Result  Row ¢ of Ag(y) is a matched filter for class ¢ that is applied to x;
largest inner product wins

Visualization for CIFAR10: Row of Apet[x], inner product with x

Input x plane, 11.7 ship, 1.1 dog, -3.4

(Converted to black & white for ease of visualization)

Matched filter can be interpreted as being applied hierarchically thru the layers

Link with saliency maps [Simonyan et al., 2013; Zeiler & Fergus, 2014]



orthogonal deep nets

Matched filter classifier is optimal only for signal + white Gaussian noise (idealized)

For more general noise/nuisance models, useful to orthogonalize the matched filters
[Eldar and Oppenheim, 2001]

Result Easy to do with any deep net thanks to the affine transformation formula;
simply add to the cost function a penalty on the off-diagonal entries of W& (W({EN)T

conventional
> e e et
850 deep net w/
3 ' AN orthogonal
£ 40 \ matched
@ N Afilters
= 30 . . \

0 25 50 75 100 125 150 175 200 ® convent
Classification on CIFAR100 Training epochs = deel

Bonus: Reduced overfitting
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