Going off the Deep End Deep Learning for

Signal Recovery

Richard Baraniuk

RICE UNIVERSITY

cycles

models

babylon

- Babylonians were obsessed with data and calculating (polynomial curve fitting)
- Knew about all the key theorems of the day and were extraordinary at predicting astronomical events
- Students learned math by working out large numbers of problems until they "understood" the general concept
- Incapable of scaffolding theorems
 together to create something larger

greece

- Ancient Greeks were obsessed with models
 - Ex: stars, sun, planets, moon are holes in a colossal cosmic colander that reveals the eternal fire beyond
- Such a (bad) model, inspired Eratosthenes to use geometry to deduce the radius of the earth
- Such a deduction would never have occurred to a Babylonian curve fitter

[Feynman, 1964 ...]

cycles

models

easy inference problems

- Great success on "easy" inference problems where accurate, tractable models are easy to develop (Greek approach)
- Least squares for optimal estimation
- Optimal matched filtering to detect signals in noise
- **Optimal Wiener filtering** to separate signals from noise
- **Optimal Kalman filtering** to track signals in noise
- AR / ARMA modeling
- **Sparse recovery/Lasso** (when the features are actually sparse)
- **SVM** (when the data is actually linearly separable)

wicked hard inference problems

- Historically, less success on "wicked hard" problems like machine perception
 - Ex: object/speech recognition, image priors, robot navigation, ...

wicked hard inference problems

- Historically, less success on "wicked hard" problems like machine perception
 - Ex: object/speech recognition, image priors, robot navigation, ...
- Key challenge: Perception plagued by large
 amounts of nuisance variation
 - Ex: in object recognition:
 changes in location, pose, viewpoint, lighting, expression, occlusion, ...
 - Some nuisances might not be known explicitly

what makes perception wicked hard?

- Problem: Nuisance variations generate entangled manifolds in high-dimensional space
- Ex: Classify Ingrid vs. Laura

holy grail of machine perception

- Learn a model that disentangles (factors out) nuisance variations, leaving meaningful intrinsic degrees of freedom
 - In the past: Fourier transform, cepstrum, wavelets, K-SVD, SIFT, ...

deep learning

 Today, Babylonians are making all the progress

- How? Black box deep neural networks
 - multi-scale architecture combining adaptive filters with simple nonlinearities
 - convolution | thresholding | sub-sampling

convolution

- Convolve image with a set of filters
 - When local image patch resembles filter weights, then output is large
 - Otherwise, output is small

- Most nets also add a **bias** to the convolution output (affine)
- Filter weights and biases are the only parameters in the net

rectifier

- Rectified linear unit (ReLU)
- Discard negative values

sub-sampling

- Down-sample to reduce dimensionality of subsequent layers
 - Average pooling (linear)
 - Max pooling (nonlinear)
 - Channel pooling

convo | ReLU | max-pool

inference

- Output convnet into an old-school neural network (1990s) (multinomial logistic regression aka "softmax")
- For classification, use a "1-hot encoding" of the classes (likelihood histogram over classes)

learning

- Estimate the **parameters** (convo filter weights, biases) given a (large) set of labeled training data $(\mathbf{x}_i, y_i)_{i=1}^n$
- Cost function that quantifies prediction errors on training data (\widehat{y}_i vs. y_i)
 - Ex: cross-entropy for classification, squared error for regression
- Optimize cost function via stochastic gradient descent with the gradient computed via backpropagation (chain rule of calculus)

deep nets – a perfect storm

ca. 2012

Big Data

Big Computers

Deep Architectures

hts: 8 x 8 x 4 x 16 4 x 4 x 16 x 32 9 x 9 x 32 x 256 256 x 4

the cranberries EVERYBODY ELSE IS DOING IT, SO WHY CAN'T WE?

25th Anniversary Edition

Remastered at Abbey Road Studios

inverse problems

- Ex: Compressive cameras, radars, MRIs
- Typically assume:

known forward operator Aknown image model for x

- Challenges:
 - Image modeling is wicked hard
 - Forward operator never known exactly

recovery by optimization

- Goal: Given y = Ax find x
- Now-classical signal model: x is k-sparse in some basis
- Numerous iterative optimizations for recovery
 - Lasso
 - BPDN
 - AMP

. . .

- ADMM
- Bregman
- Iterative hard thresholding

iterative hard thresholding

- **Goal**: Given y = Ax find x
- Standard signal prior: x is k-sparse in some basis
- Iterative hard thresholding algorithm
 - Given an initial guess x^0

– For
$$n=0,1,\ldots$$
 do $x^{n+1}=H_k[x^n+A^T(y-Ax^n)]$

network for recovery

• Encapsulate operations from one iteration of the algorithm

$$x^{n} \longrightarrow I - A^{T}A \longrightarrow H_{k} \longrightarrow x^{n+1}$$

$$A^{T}y \longrightarrow H_{k}$$

... into one block of the **network**

$$\begin{array}{ccc} x^n \longrightarrow & I - A^T A & \longrightarrow x^{n+1} \\ A^T y \longrightarrow & H_k & \longrightarrow A^T y \end{array}$$

network for recovery

• Unrolled network equivalent to N iterations of the algorithm

network for recovery

• Unrolled network equivalent to N iterations of the algorithm

- Replace assumed forward model and signal model with more flexible models that can be learned from data
- Ex: Replace wavelet thresholding *H_k* with **deep net denoisers** (ex: DnCNN, ECNDNet, ...)

optimized network

• Construct training data $\{x_t, y_t = Ax_t\}_{t=1}^T$ and use training error $e_t = x_t - x_t^N$

to optimize the parameters of the network via **back propagation** (a la deep nets)

sparse recovery (20x undersampling)

TVAL3 6.85 sec 26.4 dB

BM3D-AMP 75.04 sec 27.2 dB

Learned D-DAMP 1.22 sec 28.1 dB

A. Mousavi, C. Metzler, RB, "Learned D-AMP: Principled Neural-Network-based Compressive Image Recovery," NIPS 2017

phase retrieval

(4x Fourier measurements w/ Poison noise)

Hybrid Input/Ouput (40s)

BM3D-AMDD (144s)

prDeep (75s)

C. Metzler, P. Schniter, A. Veeraraghavan, RB, "prDeep: Robust Phase Retrieval with a Flexible Deep Network," ICML 2018

nonlinear sensing

 Can design matched nonlinear sensing/recovery schemes based on deep nets

A. Mousavi, G. Dasarathy, RB, "DeepCodec: Adaptive Sensing and Recovery via Deep Convolutional Neural Networks," ICLR 2019

CS is growing up

Rise in human intellect could be driven by integrating with machines in the future

greek questions for the babylonians

- Why is deep learning so **effective**?
- Can we derive deep learning systems from **first principles**?
- When and why does deep learning **fail**?
- How can deep learning systems be improved and extended in a principled fashion?
- Where is the **foundational framework** for theory?

See also Mallat, Soatto, Arora, Poggio, Tishby, [growing community] ...

splines **Figure** and deep learning

R. Balestriero & RB "A Spline Theory of Deep Networks," *ICML* 2018 "Mad Max: Affine Spline Insights into Deep Learning," arxiv.org/abs/1805.06576, 2018 "From Hard to Soft: Understanding Deep Network Nonlinearities...," *ICLR* 2019 "A Max-Affine Spline Perspective of RNNs," *ICLR* 2019 (w/ J. Wang)

deep nets and splines

 Deep nets solve a function approx problem hierarchically using a very special family of splines

spline approximation

spline approximation

- A spline function approximation consists of
 - a partition Ω of the independent variable (input space)
 - a (simple) local mapping on each region of the partition (our focus: piecewise-affine mappings)

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

- Consider piecewise-affine approximation of a convex function over R regions
 - Affine functions:

$$a_r^\mathsf{T} \mathbf{x} + b_r, \quad r = 1, \dots, R$$

fixed parameters

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

 Consider piecewise-affine approximation of a convex function over R regions

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

 Consider piecewise-affine approximation of a convex function over R regions

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

• Key: Any set of affine parameters $(a_r, b_r), r = 1, \ldots, R$ implicitly determines a spline partition

– Affine functions:
$$a_r^\mathsf{T}\mathbf{x} + b_r, \quad r = 1, \dots, R$$

- Convex approximation:

$$z(\mathbf{x}) = \max_{r=1,\dots,R} a_r^\mathsf{T} \mathbf{x} + b_r$$

scale + bias | ReLU is a MAS

- Scale x by a + bias b | ReLU: $z(x) = \max(0, ax + b)$
 - Affine functions:

- $(a_1, b_1) = (0, 0), \ (a_2, b_2) = (a, b)$
- Convex approximation:

$$z(\mathbf{x}) = \max_{r=1,2} a_r^\mathsf{T} \mathbf{x} + b_r$$

theorems

- Standard deep net layers are Max Affine Spline Operators
 - fully connected, convo | (leaky) ReLU, abs value
 - max/mean/channel-pooling
 - convex wrt each output dimension, piecewise-affine operator

theorems

- Standard deep net layers are MASOs
 - convex wrt each output dimension, piecewise-affine operator

- A deep net is a **composition of MASOs**
 - non-convex piecewise-affine spline operator

And now, things really get interesting...

- The parameters of a deep net layer (MASO) induce a partition of the layer's input space with convex regions
- The composition of several layers progressively subdivides a non-convex partition of the deep net input space
- Partition links deep nets to
 - vector quantization (info theory)
 - k-means (statistics)
 - Voronoi tiling (geometry)

- The *L* layer-partitions of an *L*-layer deep net combine to form the **global input signal space partition**
 - affine spline operator
 - non-convex regions

- Toy example: 3-layer "deep net"
 - Input x: 2-D (4 classes)
 - Fully connected | ReLU (45-D output)
 - Fully connected | ReLU (3-D output)
 - Fully connected | (softmax)
 (4-D output)
 - Output **y**: 4-D

 $D^{(2)}=3$ $D^{(3)}=4$ $D^{(1)}=45$

- The L layer-partitions of an L-layer deep net combine to form the global input signal space partition
 - affine spline operator
 - non-convex regions

- Toy example: 3-layer "deep net"
 - Input x: 2-D (4 classes)
 - Fully connected | ReLU (45-D output)
 - Fully connected | ReLU (3-D output)
 - Fully connected | (softmax) (4-D output)
 - Output y: 4-D

- Toy example: 3-layer "deep net"
 - Input x: 2-D (4 classes)
 - Fully connected | ReLU (45-D output)
 - Fully connected | ReLU
 - Fully connected | (softmax) (4-D output)
 - Output y: 4-D

- (3-D output)

- VQ partition of layer 1 depicted in the input space
 - **convex** regions

- Toy example: 3-layer "deep net"
 - Input **x**: 2-D (4 classes)
 - Fully connected | ReLU (45-D output)
 - Fully connected | ReLU
 - Fully connected | (softmax) (4-D output)
 - Output **y**: 4-D

- (3-D output)

Given the partition region $Q(\mathbf{x})$ containing \mathbf{X} the layer input/output mapping is affine

$$\mathbf{z}(\mathbf{x}) = \mathbf{A}_{Q(\mathbf{x})}\mathbf{x} + \mathbf{b}_{Q(\mathbf{x})}$$

- Toy example: 3-layer "deep net"
 - Input x: 2-D (4 classes)
 - Fully connected | ReLU (45-D output)
 - Fully connected | ReLU (3-D output)
 - Fully connected | (softmax) (4-D output)
 - Output y: 4-D

- VQ partition of layers 1 & 2 depicted in the input space
 - non-convex regions

- Toy example: 3-layer "deep net"
 - Input x: 2-D (4 classes)
 - Fully connected | ReLU (45-D output)
 - Fully connected | ReLU (3-D output)
 - Fully connected | (softmax) (4-D output)
 - Output y: 4-D

Given the partition region $Q(\mathbf{x})$ containing \mathbf{X} the two-layer input/output mapping is affine

$$\mathbf{z}(\mathbf{x}) = \mathbf{A}_{Q(\mathbf{x})}\mathbf{x} + \mathbf{b}_{Q(\mathbf{x})}$$

learning

layers 1 & 2

learning epochs (time)

local affine mapping – CNN

deep nets are matched filterbanks

- Row *c* of $\mathbf{A}_{Q(\mathbf{x})}$ is a vectorized signal/image corresponding to class *c*
- Entry c of deep net output = inner product between row c and signal
- For classification, select largest output; matched filter!

matched filter

• Aka "sliding window cross-correlation"

deep nets are matched filterbanks

- Row *c* of $\mathbf{A}_{Q(\mathbf{x})}$ is a vectorized signal/image corresponding to class *c*
- Entry c of deep net output = inner product between row c and signal
- For classification, select largest output; matched filter!

 (Max-Affine) Splines provide a solid mathematical foundation for a theory of deep learning based on familiar signal processing tools (like matched filtering, ...)

summary

A wide range of inference problems can be

- A wide range of deep nets solve function approximation problems using a composition of max-affine spline operators (MASOs)
 - links to vector quantization, k-means, Voronoi tiling
- Input/output deep net mapping is a **VQ-dependent affine transform**
- Deep nets are (learned) matched filterbanks

the road ahead

- Still early days for bringing models and data into concert to tackle wicked hard inference problems
- New theory: Splines
- New apps: Signal recovery

deep nets are matched filterbanks

Result Row c of $A_{Q(x)}$ is a **matched filter** for class c that is applied to x; largest inner product wins

Visualization for CIFAR10: Row of $A_{net}[x]$, inner product with x

Input *x*

(Converted to black & white for ease of visualization)

Matched filter can be interpreted as being applied hierarchically thru the layers

Link with saliency maps [Simonyan et al., 2013; Zeiler & Fergus, 2014]

orthogonal deep nets

Matched filter classifier is optimal only for signal + white Gaussian noise (idealized)

For more general noise/nuisance models, useful to **orthogonalize** the matched filters [Eldar and Oppenheim, 2001]

Result Easy to do with any deep net thanks to the affine transformation formula; simply add to the cost function a **penalty on the off-diagonal entries** of $W^{(L)}(W^{(L)})^T$

Bonus: Reduced overfitting